Orthonormal bases for p-adic continuous and continuously differentiable functions
نویسندگان
چکیده
منابع مشابه
P-adic Spaces of Continuous Functions II
Necessary and sufficient conditions are given so that the space C(X, E) of all continuous functions from a zero-dimensional topological space X to a nonArchimedean locally convex space E, equipped with the topology of uniform convergence on the compact subsets of X, to be polarly absolutely quasi-barrelled, polarly אo-barrelled, polarly `∞-barrelled or polarly co-barrelled. Also, tensor product...
متن کاملModelling with twice continuously differentiable functions ∗
Many real life situations can be described using twice continuously differentiable functions over convex sets with interior points. Such functions have an interesting separation property: At every interior point of the set they separate particular classes of quadratic convex functions from classes of quadratic concave functions. Using this property we introduce new characterizations of the deri...
متن کاملMinimal Approximate Hessians for Continuously Gâteaux Differentiable Functions
In this paper, we investigate minimal (weak) approximate Hessians, and completely answer the open questions raised by V. Jeyakumar and X. Q. Yang. As applications, we first give a generalised Taylor’s expansion in terms of a minimal weak approximate Hessian. Then we characterise the convexity of a continuously Gâteaux differentiable function. Finally some necessary and sufficient optimality con...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملEverywhere Continuous Nowhere Differentiable Functions
Here I discuss the use of everywhere continuous nowhere differentiable functions, as well as the proof of an example of such a function. First, I will explain why the existence of such functions is not intuitive, thus providing significance to the construction and explanation of these functions. Then, I will provide a specific detailed example along with the proof for why it meets the requireme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales mathématiques Blaise Pascal
سال: 1995
ISSN: 1259-1734
DOI: 10.5802/ambp.38